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COMMENT 

Hull percolation and standard percolation 
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Fondamentale, du Commissariat a I’Energie Atomique, F-91191 Gif-sur-Yvette Cedex, 
France 

Received 22 June 1988 

Abstract. We show that the ‘hull percolation’ problem considered recently by Roux er a /  
is in one-to-one correspondence with standard bond percolation. Their random tiling of 
the plane by squares with circles is identical with the Baxter-Kelland-Wu polygon 
decomposition associated with clusters of the Q-state Potts model, which in the Q+ 1 limit 
gives percolation. 

Roux et a /  (1988) considered recently the problem of random tiling of the plane by 
two kinds of squares having two quarters of circles drawn on them (figure 1). The 
lines formed by the concatenation of the fraction of circles in the plane are wavy loops 
which are self- and mutually-avoiding and actually span a square lattice. In the 
continuum limit they become fractal and the authors find numerically that. this tiling 
has the same universal geometrical properties as various models of statistical mechanics, 
namely ‘smart kinetic walks’ (SKW) (Weinrib and Trugman 1985), hulls of percolation 
clusters (Leath and Reich 1978, Ziff 1986, Saleur and Duplantier 1987) and finally 
polymers at the 0 point (Coniglio et a1 1987, Duplantier and Saleur 1987). They also 
study transport properties of the connected lines of the tiling. They call this random 
tiling problem a ‘hull percolation’, using the indirect relation of SKW to hull perimeters 
in percolation (Weinrib and Trugman 1985). Searching for a more direct analogy to 
percolation, they introduce a ‘non-standard’ percolation problem by considering the 
bonds generated by the diagonals of the plaquettes, which are left free by the quarters 
of circles (figure 1). They put onto each plaquette of the square lattice one of these 
diagonal or antidiagonal bonds each with probability p c = i .  They remark that this 
does not seem to be a percolation problem, strictly speaking, since one imposes a fixed 
occupancy level instead of leaving it free. They nevertheless observe that these bonds 
(diagonal or antidiagonal) form clusters of bonds on two lattices ZA and ZB dual of 
each other (see their figure 7). On both dual lattices ZA and TB they remark that they 

! U 1  : b )  I C )  I d )  

Figure 1. The elementary tiles of the plane (a,  b )  and their equivalent bonds (c, d ) .  
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have two dual percolation configurations at p,( =+). Their hulls are in direct correspon- 
dence to the loops drawn by the tiling model. 

The purpose of this comment is to state that this geometrical tiling model is in 
exact correspondence with standard bond percolation on a single square lattice (TA 
above for instance). More precisely, the random tiling by quarters of circles (figure 
1) is just the usual Baxter et a1 (1976) polygon decomposition of the surrounding 
lattice, generated in one-to-one correspondence by percolating clusters (on gA), or 
more generally in the Potts model (Wu 1982). The two dual sets of clusters on lattices 
TA and 2, of Roux et a1 are redundant. As we shall see, one of them (e.g. on YA) 
is sufficient to generate all the hulls, i.e. all the tiling, the other clusters on TB being 
obtained immediately as a dual configuration, without any supplementary statistical 
freedom. So once the clusters are decided on ZA, those of TB are automatically frozen 
by duality. This property in the standard Q-state Potts model on a square lattice PA, 
which in the Q+ 1 limit reproduces percolation (Kasteleyn and Fortuin 1969), is 
actually used to find the critical point by self-duality (Wu 1982). 

Let us now recall briefly the Baxter et a1 polygon decomposition of the standard 
Potts model, i.e. of the standard percolation, and show how the construction of the 
tiling model appears there. The Potts Hamiltonian is PH = -P  X(,,,) 6 , ,  where the 
Potts variables take the values U, = 1, . . . , Q (integer), ( i , j )  being next-neighbour sites 
of a square lattice TA. It is well known that one can write the high-temperature 
expansion of the partition function as 

where W ( 3 )  is the weight of a graph 3 drawn on TA made of clusters of occupied 
bonds, with a total number B of bonds, and a total number C of connected components 
(clusters) including all the isolated sites of LZA which do not belong to occupied bonds 
(figure 2). Therefore all sites of TA either belong to occupied bonds or form isolated 
point clusters so the lattice ZA is totally spanned by 3. This remark will play a role 
later. The expression (1) now defines a model for real Q, and possesses a critical point 
for Q E [0,4]. Note that defining 

(2) p = 1 -e-P 

Figure 2. A cluster configuration 9 made of occupied bonds and of isolated sites on the 
square lattice Y A  (broken lines), and the associated polygon decomposition of the diagonal 
surrounding lattice Y of Y A .  Y is obtained by joining nearest-neighbouring midpoints of 
Y A  . 
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we have identically 

z,,,,, = p-““ c p y  1 - p ) ” Q C  
‘9 

(3 )  

where K is the total number of bonds of TA. Hence for Q = 1 we recover the bond 
percolation partition function on the square lattice. Now, a spanning graph % on LfA 
can be associated with a polygon decomposition of the surrounding lattice Y of Y A  
(figure 2). The surrounding lattice Y is the diagonal square lattice obtained by joining 
the midpoints of the edges of LfA, when they are nearest neighbours. Note that the 
edges of TA and of its dual LfB cross precisely at these midpoints, which are thus the 
common points of 2, and 2,. Hence the surrounding lattice of TB is also 9’. Now, 
in the polygon decomposition of the surrounding lattice 9, associated with a spanning 
graph 3, the rule is that some vertices of Y are cut open to let the bonds of 3 ( E YA)  
go through unintersected. This also applies along all the edges of the dual YB which 
do not cross the bonds of 3 (figure 2).  Note that the resulting polygon configuration 
appears to be made of islands, supporting the connected pieces of %, surrounded by 
lakes where all the sites of the dual lattice TB are immersed. Note that the isolated 
sites of % are also surrounded by small polygons. Now, on the lattice Lf,4, having a 
total number of sites S, one has the Euler relation for any spanning graph % 

L = B + C - S  (4) 
where L is the number of loops inside the clusters. The total number of polygons of 
the polygon decomposition of Y is then 

P = L + C  ( 5 )  
since besides L interior polygons, there is one external polygon for each of the C 
connected components of %. From (4) and ( 5 )  one finds C = ( P  - B + S ) / 2  and one 
rewrites (1) as 

Zp,,,, = Q S / ’  c [(eP - l)Q-”’]”Q‘/’. 
‘9 

The critical point of the Potts model is then known by self-duality to be (see, e.g., 
Wu 1982) 

(ePc - 1) Q - ’ / ~  = 1 (7) 

and corresponds to a weight independent of the number of occupied bonds, i.e. to a 
simple polygon model 

ZPom critical = Qs” Q‘’2. v 
Note that the condition (7)  corresponds on the dual lattice ZB to a Potts model which 
is also critical. Occupied bonds on TA prevent the dual orthogonal edges of LfB from 
being occupied (figure 2). The critical point is self-dual and occurs when the bonds 
on TA and LfB have the same probability, p = pc = 4. Note finally that for percolation 
Q = 1, hence all polygon decompositions at the critical point have the same weight 1 
in (8) .  Let us finally make contact with the random tiling by Roux et al (figure 3) .  
The lattice they are tiling with the decorated squares of figure 1 is the diagonal lattice 
Y*, dual of the surrounding lattice Y of LfA and LEB. The diagonal bonds of the tiles 
of figure 1 are bonds of TA or YB. But the polygon decompositions of Y associated 
with all spanning graphs % of TA at pc for Q = 1 then generate all the tilings of the 
plane with equal probability, one lattice LfA being sufficient. The surrounding lattice 
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Figure 3. The passage to the random tiling. The tiled lattice is the diagonal square lattice 
Y*, dual of the surrounding lattice 9’. The bold broken line represents the dual graph Ce* 
of Ce on the dual lattice LfB. Both the bonds of Ce and i$* are bonds of figure 1.  When 
p f p,, the black and white tiles of Y* become anisotropic, the black preferring for p > p, 
the vertical tiling, the white the horizontal. 

of LfA and LfB being the same Y, the dual clusters on LfB of 9 generate the same 
polygon decomposition, hence the same tiling (figure 3). 

As a consequence the quoted authors were wondering how to escape from criticality 
in their random tiling model. Let us consider the effect of the standard deviation from 
criticality generated by the inverse temperature p in the Potts model. According to 
(6) and (7) when p # pc, the number of occupied bonds on the lattice YA becomes 
relevant. For instance, for p > pc (low-temperature phase) (eP - l)Q-’’2> 1,  and 
configurations 9 with more occupied bonds are favoured. This also means on the 
dual lattice LfB, the dual configuration of 9 has less occupied bonds. To understand 
the effect on the diagonal tiled lattice Y*, one has to decompose it into a checkerboard 
lattice, where (say) the black diagonal squares have a vertical diagonal belonging to 
LfA, and the white a vertical belonging to SB. Then for p > p c ,  configurations with 
more occupied bonds on LfA correspond to black squares of Y* tiled more favourably 
by vertical quarters of circles, and white squares more favourably by horizontal, the 
situation being reversed for p < pc. 

In conclusion, let us stress that one percolating lattice is sufficient for tiling the 
plane, because isolated sites, not only occupied bonds, are considered and surrounded 
by polygons. These isolated sites are really there in the geometrical properties of the 
Potts model, but one does not think about them in the usual formulation of percolation. 
This is perhaps the reason why the authors also introduced the dual lattice. Note also 
that the Baxter et a1 polygon decomposition is just the method we used (Saleur and 
Duplantier 1987) for calculating the exact fractal dimension i of the hull. 

We conclude that their study, rather than presenting a new model of percolation 
by tiling, appears to be an original numerical study of several critical properties of 
hulls of usual percolation clusters. In particular, by making all percolation clusters 
insulators, they have access to the conductivity of the hull. Note also that the question 
of the equivalence of hulls to polymers at the standard 0 point is still in debate (Poole 
et a1 1988, Duplantier and Saleur 1988), while they are certainly equivalent to polymers 
in the presence of annealed obstacles. 

Note finally that some other references are related to this discussion. Gunn and 
Ortcno (1985) considered random walks in a random environment, which for certain 
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weights are bouncing on percolation clusters. In this case, their trajectories are then 
the polygon lines of the hull. Grassberger (1986) similarly simulated the hull of bond 
percolation on the square lattice by random walks turning left or right with equal 
probabilities, and was able to get a good estimate of DH = 1.750 f 0.002, in excellent 
agreement with the present exact i .  He further considered the chance to ‘survive’ n 
steps before closing a loop n-‘. He gives c = ( p /  v ) D ,  -- 0.06, while the exact value 
should be c = ( d  - DH)DH’ = f=0.14 (Roux 1988), i.e. as in polymer physics c = vd - 1, 
for the probability of closing a loop, with here v = vg = +. Grassberger (unpublished) 
observed c = 0.13 numerically. 
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